Direct heterogeneous electron transfer of theophylline oxidase.
نویسندگان
چکیده
Direct electron transfer (DET) was shown between the heme containing enzyme theophylline oxidase (ThO) and the surface of both graphite and gold electrodes. As proof on graphite a steady state current for theophylline was recorded using the electrode modified with adsorbed ThO. The electrode showed a Michaelis-Menten-like response to theophylline with a detection limit of 0.2 mM and a Michaelis-Menten constant equal to 3.2 mM. These initial results open up a possibility for the development of reagentless third generation biosensor based on heterogeneous DET between ThO and an electrode. On gold DET between ThO and the surface of aldrithiol modified gold was studied with spectroelectrochemical measurements. DET was observed for soluble ThO as a change of its spectrum in a gold capillary responding to a change in the applied potential. It was shown that the redox conversion of the heme domain of the enzyme is directly (mediatorlessly) driven by the potential applied at the gold electrode. The measurements enabled an estimation of the formal potential (E degrees ') of the redox process equal to -275 +/- 50 mV versus Ag|AgClsat at pH 7.0. The experimentally determined number of the electrons involved in this heterogeneous electron transfer process was estimated to be equal to 0.53. The low precision in determination of the E degrees ' and the value of the number of electrons lower than one indicate that kinetic restrictions disturbed the evaluation of the true thermodynamic values from relatively fast spectroelectrochemical measurements.
منابع مشابه
Evaluation of Different Functionalized CNTs for Development of Choline Amperometric Biosensor
Choline oxidase (ChOx) was chosen as a model enzyme for evaluating the performance of CNTs’ functional groups for development of enzyme electrodes. CNTs were functionalized with carboxylic acid, amine or amide groups. Carboxylic acid, amine and amide functionalized CNTs were obtained by acid treatment, ethylenediamine or tetraethylenepentamine chemically modification and ammonia plasma treatmen...
متن کاملDirect Electrochemistry of Polyphenol Oxidase
The electrochemistry of banana tissues on a carbon paste electrode modified with multi-walled carbon nanotubes (MWCNTs) is presented. Cyclic voltammetry is applied to investigate the direct electrochemistry of banana tissues i.e. a source of polyphenol oxidase (PPO). A redox couple with an anodic and counterpart cathodic peak is obtained. The influence of various parameters such as pH,...
متن کاملDirect Electrochemistry of Redox Proteins and Enzymes Promoted by Carbon Nanotubes
The redox protein and enzyme, such as hemoglobin (Hb), horseradish peroxidase (HRP) and glucose oxidase (GOx), was immobilized on the surface of the carbon nanotube modified glassy carbon (CNT/GC) electrode, respectively. The cyclic voltammetric results indicated that the redox protein and enzyme underwent effective and stable direct electron transfer reaction with a pair of nearly symmetrical ...
متن کاملUnmediated heterogeneous electron transfer reaction of ascorbate oxidase and laccase at a gold electrode.
The unmediated electrochemistry of two large Cu-containing proteins, ascorbate oxidase and laccase, was investigated by direct-current cyclic voltammetry. Rapid heterogeneous electron transfer was achieved in the absence of promoters or mediators by trapping a small amount of protein within a solid, electrochemically inert, tributylmethyl phosphonium chloride membrane coating a gold electrode. ...
متن کاملAn optimised glucose oxidase bioelectrode exhibiting high performance direct electron transfer.
A glucose oxidase (GOd) bioelectrode exhibiting high performance, direct electron transfer (DET) has been prepared. Unprecedented redox peak current densities of 1 mA cm(-2) were observed alongside a clear electrochemical response to glucose. This system shows potential as a low cost, high performance enzymatic bioelectrode.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biosensors & bioelectronics
دوره 20 2 شماره
صفحات -
تاریخ انتشار 2004